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Let A be an m � n matrix A (w.l.o.g. m � n) with singular values�1 � �2 � : : : � �n � 0; (1)and de�ne the numerical rank r of A with respect to the threshold � as follows:�r > � � �r+1:Also, let A have a QR factorization of the formAP = QR = Q�R11 R120 R22� ; (2)where P is a permutation matrix, Q has orthonormal columns, R is upper tri-angular, and R11 is of order r. Further, let �(A) denote the two-norm conditionnumber of a matrix A. We then say that (2) is an RRQR factorization of A ifthe following properties are satis�ed:�(R11) � �1=�r and kR22k2 = �max(R22) � �r+1: (3)Whenever a well-determined gap exists in the singular value spectrum between�r and �r+1, and hence the numerical rank r is well de�ned, the RRQR factor-ization (2) reveals the numerical rank of A by consisting of a well-conditionedleading submatrix R11 and a trailing submatrix R22 of small norm.A list of problems where the RRQR factorization can be applied, as well asa a complete overview of the classical algorithms for computing it, can be foundin [8]. Here we will focus on the most recent studies.In 1992 Hong and Pan proved that an optimal RRQR factorization is ableto produce estimates of two consecutive singular values that are accurate up toa factor proportional to the matrix size [23]. This result is important becauseit shows that the RRQR may reliably reveal the numerical rank of any matrix.Unfortunately, Hong and Pan did not present a method for constructing such afactorization.Shortly thereafter, two theoretic approximations were developed: the �rstby Chandrasekaran and Ipsen [14], the second one by Pan and Tang [24]. Themain inconvenience of the former is its seriality, whereas the latter shows ahigher degree of parallelism. On the other hand, Chandrasekaran and Ipsen'salgorithm reaches tighter bounds than does the algorithm of Pan and Tang.Speci�cally, Chandrasekaran and Ipsen proved that their algorithm halts andachieves the following bounds:�min(R11) � �k(A)pk(n� k + 1) ;�max(R22) � �k+1(A)p(k + 1)(n � k) ;where A 2 IRm�n is the studied matrix and k is an integer value such that1 � k < n. In their experimental analysis, however, Chandrasekaran and Ipsen2



found some termination problem caused by round-o� arithmetic. That is, forsome matrix types and sizes, the algorithm loops inde�nitely and never halts.To solve this termination problem, Chandrasekaran and Ipsen proposed a solu-tion based on a modi�cation of the pivoting technique. The original pivotingtechnique assigns to each column a weight and then pivots the column withlargest weight to the current position. The modi�ed technique pivots the col-umn with largest weight only if its weight is larger than the weight of the currentcolumn plus a constant. The proposed value for the constant is n2�, where � isthe computer precision.Pan and Tang used a di�erent method to solve the termination problem.They proved that their most e�cient algorithm, Algorithm 3 (reverse cyclicpivoting), achieves the following bounds:�min(R11) � fpk(n� k + 1)�k(A);�max(R22) � p(k + 1)(n � k)f �k+1(A);where f is a tolerance parameter such that 0 < f � 1=pk + 1. They also addeda parameter M to take into account the errors introduced by the estimators.However, in practice since these are accurate, we have excluded that value.We present here a variant of Chandrasekaran and Ipsen's algorithm thatimplements Pan and Tang's method for solving the termination problem. Ouralgorithm is faster than Chandrasekaran and Ipsen's [14], halts, achieves thedesired bounds, and �ts into our theoretical studies.This paper is structured as follows. In Section 2, we review the originalalgorithm of Chandrasekaran and Ipsen and then present our new algorithm.In Section 3, we analyze the new algorithm theoretically. Finally, in Section 4,we summarize our results.2 Algorithms with Guaranteed TerminationWe start by brie
y describing Chandrasekaran and Ipsen's algorithm, calledHybrid-III (see Figure 1). Figures 2 and 3 present two subalgorithms, Golub-Iand Stewart-II, used by Hybrid-III. The former subalgorithm is based on theQR factorization with column pivoting [10]. The latter is based on Gragg andStewart's algorithm [19]. Chandrasekaran and Ipsen proposed in their workthe use of su�x -I for those algorithms that work on the lower right blocks ofR, and su�x -II for those that work on the upper left block. The su�x -IIIis added to the algorithms that generate an RRQR and, therefore, work onthe whole matrix. Both the Golub-I and Stewart-II subalgorithms carry out aunique permutation: the �rst one is restricted to block R(k:n; k:n), the secondto block R(1: k; 1: k). 3



Algorithm Hybrid-III(k)repeatrepeatGolub-I(k)Stewart-II(k)until there are no more permutations.repeatGolub-I(k+1)Stewart-II(k+1)until there are no more permutations.until there are no more permutations.End AlgorithmFigure 1: Original Hybrid-III algorithm of Chandrasekaran IpsenAlgorithm Golub-I(k)1. Find the smallest index j, k � j � n, such thatkR(k: j; j)k2 = maxk�i�n kR(k: i; i)k2 .2. if (j > k) then3. Pivot column j to position k.4. Retriangularize the matrix from the left with orthogonal transformations.5. end ifEnd Algorithm Figure 2: Golub-I subalgorithmAlgorithm Stewart-II(k)1. Find the largest index j, 1 � j � k, such thatkeTj (R(1: k; 1: k))�1k2 = max1�i�k keTi (R(1: k; 1: k))�1k2:2. if (j < k) then3. Pivot column j to position k.4. Retriangularize the matrix from the left with orthogonal transformations.5. end ifEnd AlgorithmFigure 3: Stewart-II subalgorithm4



Algorithm Hybrid(GC)-III-sf(f,k)repeatGolub-I-sf(f,k+1)Golub-I-sf(f,k)Chan-II-sf(f,k)Chan-II-sf(f,k+1)until there are no more permutations.End AlgorithmFigure 4: New algorithm Hybrid(GC)-III-sfSince the technique used to solve the termination problem by Chandrasekaranand Ipsen was not included in their theoretical study, the e�ect on the reachedbounds is unknown. Moreover, since it is based on a �xed value, independentfrom the matrix norm, it may be too small or large for some matrices.We present in this paper a better solution to the termination problem, whichis also included in our theoretical study. Speci�cally, we have solved the termi-nation problem by means of a technique similar to that of Pan and Tang [24].The solution is based on the use of a tolerance parameter f , 0 < f � 1. Thepivoting technique of the subalgorithms (Golub-I, etc.) assigns a weight to eachcolumn and then selects that column having the greatest weight as the pivotcolumn. Our new pivoting technique consists of pivoting the heaviest columnonly if its weight scaled by the parameter f is larger than the weight of thecurrent column.Figures 4, 5, and 6 respectively present the new algorithm Hybrid-III(GC)-sfand its subalgorithms Golub-I-sf and Chan-II-sf. The new algorithm satis�esthe following bounds (to be proved shortly):�min(R11) � f2pk(n� k + 1)�k(A);�max(R22) � p(k + 1)(n � k)f2 �k+1(A);where f is a threshold interval such that 0 < f � 1. This value is better thanthat of Pan and Tang (0 < f � 1=pk + 1) because it allows tighter bounds.Pan and Tang's algorithms as well as our new algorithm solve the terminationproblem. If the value of the parameter f is very small, the gap between thesingular values is reduced, and the algorithm may fail to reveal the rank. Onthe other hand, a large value of f (f = 1 or very close to it) though adequateto reveal the rank, may produce termination problems. Pan and Tang propose5



Algorithm Golub-I-sf(f,k)1. Find the smallest index j, k � j � n, such thatkR(k: j; j)k2 = maxk�i�n kR(k: i; i)k2 .2. if (f � kR(k: j; j)k2 >j R(k; k) j ) then3. Move column j to position k.4. Retriangularize the matrix from the left with orthogonal transformations.5. end ifEnd AlgorithmFigure 5: \f-factor" variant of Golub-I subalgorithm
Algorithm Chan-II-sf(f,k)1. Estimate the right singular vector associated with the smallest singular value ofR(1: k; 1: k). Store it in v.2. if (f � j vj j>j vk j ) then3. Pivot column j to position k.4. Retriangularize the matrix from the left with orthogonal transformations.5. end ifEnd AlgorithmFigure 6: \f-factor" variant of Chan-II subalgorithm6



in their work the value f = 0:65, which seems to balance both situations.Our new algorithm is faster than Hybrid-III because of the application ofthe following two techniques:Use of Estimators: Stewart-II requires the computation of the inverse of anr � r upper triangular matrix, where r is the numerical rank. Since thisprocess is very expensive (cubic), we use the subalgorithm Chan-II, whichcan be e�ciently implemented if estimators are used. Speci�cally, we usethe incremental condition estimator developed by Bischof [7], thus ob-taining a quadratic cost, much smaller than the former. In theory, thesubstitution of Chan-II allows the possibility of a failure in the RRQR,that is, the rank will be revealed only if the estimates are accurate. Nev-ertheless, in practice, these estimators work correctly; indeed, for some ofthem, no matrix appears to make them fail.Main-Loop Reorganization: The main loop of our new algorithm, clearlydi�erent from Chandrasekaran and Ipsen's algorithm, gives a faster con-vergence rate by avoiding the �nal steps that do not improve the columnordering.Recently, Bischof and Quintana [8, 25] developed and implemented a newblock algorithm for computing the RRQR factorization based on our method.Their experimental study, carried out on platforms including the IBM RS/6000-370, DEC AXP 6000-300, SGI R8000, HP 9000/715, and SUN hypersparc, hasshown that the new algorithm based on our method is up to two or three timesfaster than the traditional QR factorization with column pivoting.3 Theoretical Analysis of the New AlgorithmNext, we analyze the correctness of the new algorithm. First, we prove thatit satis�es the desired bounds. Then, we prove that it halts.Let k be an integer value 1 � k < n, let f be a value 0 < f � 1, andlet R 2 IRn�n be a matrix such that �k(R) > 0 and M� = QR for somepermutation matrix � 2 IRn�n and M 2 IRm�n. Then algorithm Hybrid(GC)-III-sf(f,k) achieves the following bounds:�min(R11) � f2pk(n� k + 1)�k(M );�max(R22) � p(k + 1)(n� k)f2 �k+1(M ) :3.1 BackgroundHere we present some properties and a proposition required for the theo-retical analysis. We present the proof only of the last proposition because thedemonstration of the properties is widely-known.7



Property 1 Let A be an m � n matrix and �(A) = max1�j�n kAejk2. Then,�(A) � �max(A) � pn�(A):Property 2 Consider a nonsingular n�n matrix A, and de�ne � (A) = 1=max1�i�n keTi A�1k2.Then, � (A)pn � �min(A) � � (A):Property 3 Let M� = QR be the QR factorization of matrix M multiplied bysome permutation matrix �. Let R11 be the k� k upper left block of R, and let�R11 be the (k+ 1)� (k+ 1) upper left block of R. Then the following propertiesrelate the singular values: �k(M ) � �min(R11)�k+1(M ) � �min( �R11):Property 4 Let M� = QR be the QR factorization of matrix M multiplied bya permutation matrix �. Let R22 be the (n � k) � (n � k) lower right block ofR, and let �R22 be the (n� k+ 1)� (n� k+ 1) lower right block of R. Then thefollowing properties relate the singular values:�k+1(M ) � �max(R22)�k(M ) � �max( �R22):Proposition 5 Let A be an m � n matrix, and let x 2 IRn satisfy kxk2 = 1and kAxk2 = �. Consider a permutation matrix � such that y = �Tx satis�esj yn j � f � kyk1; 0 < f � 1. Then, if A� = QR is the QR factorization ofmatrix A�, j rnn j � pnf �:Proof. Since �Tx = y, kyk2 = kxk2 = 1. A well-known inequality betweennorms is kyk2 � pnkyk1.From the hypothesis of the proposition, it is satis�ed that j yn j � f=pn:On the other hand, it is possible to show thatQTAx = QTA��Tx = Ry =  ...rnnyn ! :Therefore,� = kAxk2 = kQTAxk2 = kRyk2 �j rnnyn j �j rnn j fpn;8



and the desired result is obtainedj rnn j � pnf �:QED.3.2 Desired BoundsLet k be an integer value 1 � k < n, let f be a value 0 < f � 1, andlet R 2 IRn�n be a matrix such that �k(R) > 0 and M� = QR for somepermutation matrix � 2 IRn�n and M 2 IRm�n. Then algorithm Hybrid(GC)-III-sf(f,k) achieves the following bounds:�min(R11) � f2pk(n� k + 1)�k(M )�max(R22) � p(k + 1)(n� k)f2 �k+1(M ) :Proof. First we brie
y describe the notation that will be used in the demon-stration. The upper triangular matrix R is partitioned as follows:R = � �A �B�C � = � A BC � =  bA bBbC ! ;where �A is (k � 1)� (k � 1), �C is (n � k + 1)� (n� k + 1), A = R11 is k � k,C = R22 is (n�k)�(n�k), bA is (k+1)�(k+1), and bC is (n�k�1)�(n�k�1).Next we prove that the algorithm reaches the preceding bounds wheneverit halts. In such cases, it is obvious that there are no permutations in any ofthe four subalgorithms. Let's check what bounds are achieved if there are nopermutations.First, Golub-I-sf(f,k+1) is analyzed. If it does not permute any column, thenkCe1k2 � fkCejk2; 1 � j � n� k.Therefore, j rk+1;k+1 j= kCe1k2 � f max1�i�n�kkCeik2:Applying property 1 to matrix C, we obtain�max(C) � pn� k max1�i�n�kkCeik2;and combining both expressions we have�max(C) � pn� kf j rk+1;k+1 j : (4)9



Second, Golub-I-sf(f,k) is analyzed. If it does not permute any column, thenk �Ce1k2 � fk �Cejk2; 1 � j � n� k + 1.Therefore, j rkk j= k �Ce1k2 � f max1�i�n�k+1k �Ceik2:Applying property 1 to matrix �C, we obtain�max( �C) � pn� k + 1 max1�i�n�k+1k �Ceik2;and combining both expressions we have�max( �C) � pn� k + 1f j rkk j : (5)Third, algorithm Chan-II-sf(f,k) is analyzed. If it does not permute anycolumn, from proposition 5 the following condition is satis�edj rkk j � �min(A)pkf :If this expression is combined with the inequality (5), the following is ob-tained: pkf �min(A) �j rkk j � fpn� k + 1�max( �C);and from it �min(R11) � f2pk(n� k + 1)�max( �C):Applying property 4, we obtain the �rst required bound:�min(R11) � f2pk(n� k + 1)�k(M ) :Finally, Chan-II-sf(f,k+1) is analyzed. If no permutations occur, from propo-sition 5 the following condition is satis�edj rk+1;k+1 j � �min( bA)pk + 1f :If this expression is combined with the inequality (4), the following is ob-tained: pk + 1f �min( bA) �j rk+1;k+1 j � fpn � k�max(C);and from it p(n� k)(k + 1)f2 �min( bA) � �max(R22):10



Applying property 3, we obtain the second required bound:p(n� k)(k + 1)f2 �k+1(M ) � �max(R22) :QED.3.3 TerminationThe second step of our analysis is to prove that the algorithm halts. If nopermutations occur, the algorithm terminates with a unique iteration of themain loop.If there are permutations, however, the termination of the algorithmmust bedemonstrated. The basic goal is to prove that j det(R11) j is a monotonicallyincreasing function during the execution of the algorithm. Since the value jdet(R11) j is unique for each di�erent ordering of the columns of R, no twoorderings of the columns will be equal if j det(R11) j increases continuously.Since a �nite number of di�erent orderings exist for the columns of R, thealgorithm must eventually terminate.In each iteration of the algorithm, four calls are performed, say, Golub-I-sf(f,k), Golub-I-sf(f,k+1), Chan-II-sf(f,k), and Chan-II-sf(f,k+1). SubalgorithmsGolub-I-sf(f,k+1) and Chan-II-sf(f,k) do not modify j det(R11) j . However,Golub-I-sf(f,k) and Chan-II-sf(f,k+1) do modify it. It must be proved that afterthe execution of Golub-I-sf(f,k) and Chan-II-sf(f,k+1), the value of j det(R11) jis larger.First, the consequences of Golub-I-sf(f,k) in j det(R11) j are analyzed. As-sume that a permutation occurred. Then column j, k � j � n, must be movedto position k. The permutation can be performed in two steps:1. Swap k + 1 and j.2. Swap k and k + 1.The �rst step does not modify j det(R11) j , whereas the second step does.Consider that the �rst step has been carried out, and focus on the second step.Let �R be the triangular matrix before the permutation, and let �R11 be thek� k upper left block of �R. Let R the triangular matrix after the permutationhas been applied, and let R11 be the k� k upper left block of R. Since we mustdemonstrate that the determinant is always increasing, it is su�cient to provethat j det(R11) j>j det( �R11) j . 11



Consider that the matrix before the permutation has the following structure:�R = 0BBBBBBBBBB@ x x : : : x x : : : xx : : : x x : : : x... ... ...� � : : : x
 : : : x...x 1CCCCCCCCCCA kk + 1 :Then, j det( �R11) j=j p� j , where p is the product of the �rst k � 1 diagonalelements. Now columns k and k + 1 are permuted and the matrix is retriangu-larized. Since there has been is a permutation, j � j< fp�2 + 
2:After the permutation and retriangularization, the matrix has the followingstructure: R = 0BBBBBBBBBB@ x x : : : x x : : : xx : : : x x : : : x... ... ...p�2 + 
2 x1 : : : xx2 : : : x...x 1CCCCCCCCCCA kk + 1 ;where px21 + x22 =j � j . The value of j det(R11) j isj det(R11) j=j pp�2 + 
2 j>j p j j � jf = 1f j p� j �j det( �R11) j ;and therefore the desired conclusion is reached:j det(R11) j>j det( �R11) j :Next, the consequences of Chan-II-sf(f,k+1) in j det(R11) j are analyzed.Assume that a permutation occured. Then column j must be moved to positionk + 1. The permutation can be performed in two steps:1. Swap j and k.2. Swap k and k + 1.The �rst step does not change j det(R11) j , whereas the second step maymodify j det(R11) j . Consider that the �rst step has been carried out and focuson the second step. 12



Let �R be the triangular matrix before the permutation, and let �R11 bethe k � k upper left block of �R. Let R be the triangular matrix after thepermutation, and let R11 be the k � k upper left block of R. Since we mustprove that the value of the determinant always increases, it is su�cient to provethat j det(R11) j>j det( �R11) j .Consider that the matrix before the permutation has the following structure:�R = 0BBBBBBBBBB@ x x : : : x x : : : xx : : : x x : : : x... ... ...� � : : : x
 : : : x...x 1CCCCCCCCCCA kk + 1 :Then, j det( �R11) j=j q� j , where q is the product of the �rst k � 1 diagonalelements.Now columns k and k + 1 of the matrix must be permuted and the matrixretriangularized. Since a permutation has occured, thenj 
 j> �min( �R(1: k+ 1; 1: k+ 1))pk + 1f : (6)After the permutation and the retriangularization, the matrix has the fol-lowing structure:R = 0BBBBBBBBBB@ x x : : : x x : : : xx : : : x x : : : x... ... ...p�2 + 
2 x1 : : : xx2 : : : x...x 1CCCCCCCCCCA kk + 1 ;where px21 + x22 =j � j . The new value of j det(R11) j isj det(R11) j=j qp�2 + 
2 j :After the application of Chan-II-sf(f,k+1), the following condition is satis-�ed: j x2 j � �min(R(1: k+ 1; 1: k+ 1))pk + 1f : (7)13



Combining the inequalities (6) and (7) and since �min( �R(1: k+1; 1: k+1)) =�min(R(1: k + 1; 1: k+ 1)); it is obtained thatj 
 j>j x2 j :Assume that the retriangularization is carried out by means of a Givensrotation. Then � c s�s c �� �
 � = � p�2 + 
20 � ;and � c s�s c �� �0 � = � x1x2 � :If c and s are isolated from the �rst two equations and their expressions aresubstituted in the fourth equation, thenx2� � + x1� 
 = 0;which is equivalent to x2� + x1
 = 0:Applying some of the properties of the modulus j � j to the preceding ex-pression, we obtain j x2� j = j x1
 jj x2 j j � j = j x1 j j 
 j :Since j 
 j>j x2 j , then j x2 j j � j>j x1 j j x2 j ; and we obtain from thisexpression that j � j>j x1 j :Thus, j det(R11) j = j qp�2 + 
2 j> j qqx21 + x22 j� j � j :Therefore, the required result is obtained:j det(R11) j>j det( �R11) j :QED. 14



4 Concluding RemarksIn this paper we presented a new algorithm for computing the rank-revealingQR factorization (RRQR) of triangular matrices. Chandrasekaran and Ipsen'salgorithmhas a termination problem with some matrix types and sizes. To solvethis problem, these authors proposed a method that was not included in theirtheoretical studies. Hence, the e�ect of this change on the algorithm bounds isunknown. In contrast, we solve the termination problem with a method �rstsuggested by Pan and Tang that has been fully included in our new theoreticalstudy. In addition, the new algorithm is faster because� Subalgorithm Chan-II, with a quadratic cost on the rank, is used insteadof Stewart-II, with a cubic cost.� The main structure of the algorithm has been modi�ed in order to allowa faster convergence rate.We also theoretically analyze the new algorithm to prove that it halts andachieves the desired bounds.Experimental study has shown that the new implementation runs between 2times (for low-rank matrices) and 40 times (for high-rank matrices) faster thanChandrasekaran and Ipsen's algorithm on 200� 200 matrices. We expect thatthis factor will grow higher for larger matrices.Because of the advantages of the new algorithm, it has been used by Bischofand Quintana [8] to develop a new block algorithm for computing the RRQRfactorization. This block algorithm has shown a much higher performance thanthe traditional QR factorization with column pivoting. In an experimental studycarried out on several di�erent platforms (including an IBM RS/6000-370, DECAXP 6000-300, HP 9000/715, SUN hypersparc, and SGI R8000), the new blockalgorithm based on our method has been about two to three times faster thanQR factorization with column pivoting.AcknowledgmentsWe express our gratitude to Dr. C. H. Bischof for his interesting suggestions,ideas, and discussions. We also thank Gail Pieper for her e�ort to improve theoriginal manuscript.References[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz,A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, andD. Sorensen. LAPACK User's Guide. SIAM, Philadelphia, 1992.[2] Christian H. Bischof. A block QR factorization algorithm using restrictedpivoting. In Proceedings SUPERCOMPUTING '89, pages 248{256, Balti-more, Md., 1989. ACM Press. 15
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